Verification type
Analytical Solutions

Database reference
ANA-2

Topic / Application
Hydrogen LES

Physics
Detonation

Summary
Authors use LES to simulate hydrogen-air detonation. The solution is verified against a simplified /analytical model (ZND).

Description
A large eddy simulation (LES) model of hydrogen–air detonation at very large scales, is presented. The LES model is verified against theoretical solution by the Zel'dovich–von Neumann–Doring (ZND) theory for a case of planar 29.05\% hydrogen–air detonation in elongated 3 x 3 x 100 m calculation domain.

A Riemann problem (RP) is also simulated as it gives an exact solution to non-linear equations like the Euler equations.

The numerical simulation reproduced theoretical values of von Neumann spike, Chapman–Jouguet pressure, Taylor wave and detonation propagation velocity.

Case Title
LES Model of Large Scale hydrogen-air planar detonations; verification by the ZND theory

Authors
Zibrowski, M. Marakov, D. Volkov, M.

Year
2008

Online reference

Case image
Comparison between analytical solution and numerical simulation of the Riemann problem

The SUSANA project is co-funded by the European Commission within the 7\(^{th}\) Framework Program

Grant agreement no.: FCH-JU-325386
Governing equations

Results

The SUSANA project is co-funded by the European Commission within the 7th Framework Program

Grant agreement no.: FCH-JU-325386